Bone Preparation in Cemented Partial Knee Replacement using Pressurized CO₂ Gas Jet System

Dennis McGee, MD, Saint Alphonsus Medical Group, Boise, Idaho

Aseptic loosening is the most common cause for revision of unicompartmental knee arthroplasty (UKA)\(^2\). This fact highlights the importance of achieving optimum cement fixation via meticulous and effective cleaning and drying of the bone bed. Improved cement penetration and interdigitation into the cancellous bone offers the potential for a reduction in aseptic loosening rates and increased longevity in UKA. Increased cement mantle thickness has also been shown to greatly decrease peak stresses transmitted to the cement interfaces in UKA\(^3\). Pressurized CO₂ bone preparation utilizing the CarboJet\(^\circledR\) system has demonstrated improved cement penetration, cement mantle thickness\(^4,5\) and bone-cement interface strength\(^6\) compared to saline lavage. In particular, the small diameter angled nozzle of the CarboJet system allows effective access for debris removal in tight spaces with less exposure, as during UKA. Excellent cement mantle thickness and consistency, with fewer radiolucent lines, has been observed with the use of CarboJet combined with simple bulb syringe saline lavage in my UKA cases.

Patient A – Bone bed prepared with pulsatile saline lavage. Arrow indicates radiolucent line.

Patient B – Bone bed prepared with syringe saline lavage and CarboJet CO₂ Bone Preparation System.

The CarboJet nozzle provides good access for cleaning and drying posterior aspects of both the tibial and femoral surfaces.

Expect Innovation.

www.kinamed.com

© Kinamed® Inc. 2015 B00212 B