Ready when you are!
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is Initial RXpert?</td>
<td>6</td>
</tr>
<tr>
<td>Kit Content</td>
<td>9</td>
</tr>
<tr>
<td>Plate Features</td>
<td>10</td>
</tr>
<tr>
<td>A comprehensive range of plates</td>
<td>10</td>
</tr>
<tr>
<td>Design features</td>
<td>11</td>
</tr>
<tr>
<td>Sizes XS, 1, 2 & 4</td>
<td>12</td>
</tr>
<tr>
<td>Screw and Fixation Features</td>
<td>15</td>
</tr>
<tr>
<td>Polyaxial and monoaxial locking fixation</td>
<td>15</td>
</tr>
<tr>
<td>Locking oblong hole</td>
<td>16</td>
</tr>
<tr>
<td>Templates</td>
<td>17</td>
</tr>
<tr>
<td>Surgical Techniques</td>
<td>18</td>
</tr>
<tr>
<td>Extra short plate (XS)</td>
<td>18</td>
</tr>
<tr>
<td>Sizes 1, 2 & 4</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>26</td>
</tr>
</tbody>
</table>
With a non sterile standard kit

Constraints

- Complex traceability
- Contracted out sterilization
- Suppliers’ deadline

High costs

- Stocks
- Control
- Cleaning
- Decontamination
- Sterilization

Bulky storage

Complex process

1. Delivery
2. Storage
3. Unpacking
4. Control
5. Decontamination
6. Cleaning
7. Drying
8. Control
9. Packaging of the kit
10. Sterilization
11. Surgery
12. Decontamination
13. Cleaning
14. Drying
15. Control
16. Traceability
17. Restocking
18. Packaging of the kit
19. Sterilization
20. Storage

Prevents an effective solution & a quick response

INCREASED RISKS

NON OPTIMAL surgery

URGENT SURGICAL CASES COMPROMISED
Safety

Cost efficiency

- Controlled stocks
- Simplified control
- Cleaning
- Decontamination
- Sterilization
- Sundry expenses

Efficiency

- 1 Delivery
- 2 Storage
- 3 Surgery
- An effective solution & a quick response

Available when needed

- READY-TO-USE FOR SURGERY
- Optimized handling of URGENT SURGICAL CASES

With the INITIAL™ Xpert 2.4

Optimized handling of URGENT SURGICAL CASES

with state-of-the-art implants

Ready when you are!
Available when needed:

The Initial R™ Xpert 2.4 kit comes pre-sterilized and ready to use. The combination of sterile implants and single use instrumentation in a single packaging makes Initial R™ Xpert 2.4 ideal for use in urgent surgical cases.

Safety:

The Initial R™ Xpert 2.4 kit is fully traceable and has a shelf life of 5 years. Its instrumentation and implants are “always new” and have never been opened or used before.

Storage:

Initial R™ Xpert 2.4 kit can be easily stored in the operating room because of its small size.

Costs:

Initial R™ Xpert 2.4 is a cost-effective solution. The additional costs including cleaning, decontamination, sterilization of kits are cancelled.

Contamination:

The combination of implants and sterile single-use instrumentation minimizes contamination risks.

Buying procedure:

Initial R™ Xpert 2.4 facilitates buying procedures: restocking and orders are simplified, stock management is optimized.
Indications

The implants of the Initial™ Xpert 2.4 wrist range are intended for hand and forearm fractures, osteotomies and arthrodeses in adults.

Contraindications

- Serious vascular deterioration, bone devitalization.
- Pregnancy.
- Acute or chronic local or systemic infections.
- Lack of musculo-cutaneous cover, severe vascular deficiency affecting the concerned area.
- Insufficient bone quality preventing a good fixation of the implants into the bone.
- Muscular deficit, neurological deficiency or behavioral disorders, which could submit the implant to abnormal mechanical strains.
- Allergy to one of the materials used or sensitivity to foreign bodies.
- Serious problems of non-compliance, mental or neurological disorders, failure to follow post-operative care recommendations.
- Unstable physical and/or mental condition.

Kit content

- **SDT2.4Lxx**
 - Ø2.4 mm locking screws
 - Non anodized

- Pins - Ø1.4 L120 mm x 4

- T8 prehensor screwdriver

- Length gauge

- Ø1.8 mm quick coupling drill bit - L125 mm

- **CT2.4Lxx**
 - Ø2.4 mm standard cortical screws pink anodized

- Plate for distal radius

- Handle for guide gauge

- Ø1.8 mm threaded guide gauge

- Polyaxial drill guide
A comprehensive range of plates

Kits available for 11 sizes, 5 lengths, 3 widths and 2 dedicated volar rim plates, for left (blue plates) and right (green plates) sides, offering versatile solutions.
Plate features

Design features

ANATOMICAL SHAPE AND LOW PROFILE

The design of these implants is the result of a proprietary state-of-the-art mapping technology to establish the maximum congruence between the plate and the bone.

- **Precontoured plates** for a distal anatomical fit:
 - The distal edge of the plate runs alongside the watershed line;
 - Different medial and lateral radii of curvature for optimized volar tilt.

- Low overall profile height and chamfered plate contour to reduce the tendons and soft tissue irritation.
- Various pin holes possibilities: to locate the joint space or to temporarily fix specific fragments.
- Multiple points of fixation and the ability to reach small fragments (dorsal lip comminution), allowing to treat highly comminutive fractures.

VOLAR RIM PLATES

Application: stabilization of complex intra-articular fractures of the distal radius.

- **Precontoured plates** for anatomical fit on anterior area, anatomical reduction and limited contact with flexor tendons.
- **Low-profile plates** to minimize tendons and soft tissue irritation.
- **Lateral lip** allowing the plate positioning on the watershed line.

Post-operative consideration for volar rim plates (available in KIT-XES1x & KIT-XEN1x)

The plate positioning onto the watershed line may increase the risk of tendon injury. The surgeon should take this into consideration during subsequent follow-up of the patient. Plate removal post-healing is mandatory.
Plate features

Sizes XS, 1, 2, & 4

Dedicated instruments for mini invasive (MIS) surgery are available for narrow and standard plates sizes XS, 1 & 2.
Plate features

Size 3

Plate dedicated to target the radial styloid tip.

- 8 polyaxial holes
- Hole for Ø1.4 mm pin
- Reduced distal profile to limit contact with tendons
- Pre-angled holes
- Hole for Ø1.4 mm pin insertion to locate the joint space
- Monoaxial fixation only using the threaded guide gauge for:
 - 2 pre-angled monoaxial locking holes targeting the radial styloid
 - Window’s monoaxial locking hole
- The window in the plate allows a better visualization of the fracture reduction or for a bone graft insertion
- Locking oblong hole allows to adjust the plate positioning with a cortical screw; in case of poor bone quality, a locking screw can be used to increase stability
Plate features

\> Volar Rim

- **8 polyaxial holes**
- **Lateral lip allowing the plate positioning on the watershed line.**
- **Hole for Ø1.4 mm pin insertion to locate the joint space.**
- **Monoaxial fixation only using the threaded guide gauge for:**
 - Window’s monoaxial locking hole
 - The window in the plate allows a better visualization of the fracture reduction or for a bone graft insertion
- **Locking oblong hole allows to adjust the plate positioning with a cortical screw; in case of poor bone quality, a locking screw can be used to increase stability**
- **Hole for Ø1.4 mm pin**

Post-operative consideration for Volar Rim plates (available in KIT-XES1x & KIT-XEN1x)

The plate positioning onto the watershed line may increase the risk of tendon injury. The surgeon should take this into consideration during subsequent follow-up of the patient. Plate removal post-healing is mandatory.
Screw and fixation features

Polyaxial and monoaxial locking fixation – Ø2.4 mm

- Ø2.4 mm screws: single diameter for an intra operative simplicity.
- Hexalobular screw head design (improved torque transmission – optimized pick and stick).
- Optimized screw head design limiting protuberance and soft tissue irritation.
- Pre-angled holes for optimized screw placement thanks to the use of the threaded guide gauge.
- New patented polyaxial locking platform +/-10° thanks to the use of the polyaxial drill guide. Helps reducing the sigmoid notch and the lunate facet.

⚠️ When using the polyaxial drill guide, make sure that the guide is inserted in the axis of the hole to avoid over angulation of the drilling, which could result in a failure of the locking mechanism.

- Smooth tip limiting soft tissue irritation.
- Screw length from 10 to 28 mm.
- Ø1.8 mm sterile screw pegs (BDT1.8Lxx-ST) are available on demand.
Screw and fixation features

- Locking oblong hole – Ø2.4 mm locking and non locking screws
 - Based on the surgical technique, cortical screws can be used either to finalize the reduction by creating compression or to stabilize the plate.
 - In case of poor bone quality, the use of a locking screw can increase the stability.

- Optimized screw positioning to restore bone anatomy
 - Pre-oriented screws targeting the tip of the radial styloid for an optimized support to establish fracture reduction (only for the Ø2.4 mm size 3 plates (DTxVS3 and DTxVN3).
 - Anatomically distributed screws following the subchondral bone to secure distal fragments.
 - 2 rows of subchondral support to increase the stability of the reduction:
 - 1st row with 4 locking screws to support the volar lip (5 for the wide plates available in KIT-XW2G & KIT-XW2D),
 - 2nd row with 3 locking screws to support the dorsal lip (except for the narrow headed extrashort plate).

Handle for guide gauge: before performing the drilling into the oblong hole, clip the handle for guide gauge on the Ø1.8 mm threaded guide gauge.

Ref: DTDVS3 available in KIT-XS3D
The Initial R™ Xpert 2.4 templates have been designed to determine quickly and simply the appropriate Initial R™ Xpert 2.4 kit. Each kit has its own template. Templates are divided into distinct groups (see table below).

STERILE TEMPLATES

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANC946</td>
<td>Single use templates for KIT-XNS1D, KIT-XN1D and KIT-XS1D</td>
</tr>
<tr>
<td>ANC947</td>
<td>Single use templates for KIT-XNS1G, KIT-XN1G and KIT-XS1G</td>
</tr>
<tr>
<td>ANC949</td>
<td>Single use templates for KIT-XS3D and KIT-XN3D</td>
</tr>
<tr>
<td>ANC950</td>
<td>Single use templates for KIT-XS3G and KIT-XN3G</td>
</tr>
<tr>
<td>ANC951</td>
<td>Single use templates for KIT-XS4D</td>
</tr>
<tr>
<td>ANC969</td>
<td>Single use templates for KIT-XS4G</td>
</tr>
<tr>
<td>ANC970</td>
<td>Single use templates for KIT-XN2D, KIT-XS2D and KIT-XW2D</td>
</tr>
<tr>
<td>ANC971</td>
<td>Single use templates for KIT-XN2G, KIT-XS2G and KIT-XW2G</td>
</tr>
<tr>
<td>ANC972</td>
<td>Single use templates for KIT-XN1D and KIT-XS1D</td>
</tr>
<tr>
<td>ANC973</td>
<td>Single use templates for KIT-XN1G and KIT-XS1G</td>
</tr>
</tbody>
</table>

* Available in sterile packaging - Single use kit.

Each template is marked to easily identify the corresponding Initial R™ Xpert 2.4 kit.
Surgical techniques

naissance a narrow head extra short plate

1. Determine the plate size thanks to the templates, then choose the suitable kit. Afterwards, stabilize the fracture, then position the plate.

2. Clip the handle for guide gauge on the Ø1.8 mm threaded guide gauge and perform the drilling using the assembly in the oblong hole.
 - Option 1: Determine the screw length using the drill bit and guide gauge.
 - Option 2: Determine the screw length using the length gauge.

3. Insert the Ø2.4 mm pink cortical screw into the oblong hole to temporarily fix the plate.

 N.B.: In the case of poor bone quality, a Ø2.4 mm locking screw (SDT2.4Lxx) can be inserted to increase stability.

4. Insert a Ø1.4 mm pin into the radioulnar hole for pin and check the joint space. Remove the pin and reposition the plate if required.
Insert the polyaxial drill guide into the radioulnar hole (1) and drill using the drill bit. Determine the screw length using the length gauge and insert a Ø2.4 mm non-anodized locking screw using the screwdriver.

Proceed similarly with the lateral hole positioned near the radial styloid process (2).

Option 1
- Determine the screw length using the drill bit and guide gauge.

Option 2
- Determine the screw length using the length gauge.

Then, insert a Ø2.4 mm non anodized locking screw using the screwdriver.

Proceed with the monoaxial technique (or polyaxial technique if need be) for the remaining locking holes.
Surgical techniques

Sizes 1, 2 & 4

Example: surgical technique with a standard plate size 2
(Same technique for all plate sizes 1, 2 & 4).

1. Determine the plate size thanks to the templates, then choose the suitable kit. Afterwards, stabilize the fracture, then position the plate.

2. Clip the handle for guide gauge on the Ø1.8 mm threaded guide gauge and perform the drilling using the assembly in the oblong hole.
 - Option 1: Determine the screw length using the drill bit and guide gauge.
 - Option 2: Determine the screw length using the length gauge.

3. Insert the Ø2.4 mm pink cortical screw into the oblong hole to temporarily fix the plate.

 N.B.: In the case of poor bone quality, a Ø2.4 mm locking screw (SDT2.4Lxx) can be inserted to increase stability.

4. Insert a Ø1.4 mm pin into the most distal radioulnar hole for pin and check the joint space. Remove the pin and reposition the plate if required.

CAUTION
The window's locking hole is compatible with the monoaxial technique only.
Surgical techniques

Sizes 1, 2 & 4

Example: surgical technique with a standard plate size 2
(Same technique for all plate sizes 1, 2 & 4).

Polyaxial technique

Insert the polyaxial drill guide into the radioulnar hole (1) and drill using the drill bit. Determine the screw length using the length gauge and insert a Ø2.4 mm non-anodized locking screw using the screwdriver. Proceed similarly with the lateral hole positioned near the radial styloid process (2).

Monoaxial technique

Insert the guide gauge into the radioulnar hole (1) and drill using the drill bit. Determine the screw length using the drill bit and guide gauge.

Option 1 - Determine the screw length using the drill bit and guide gauge.
Option 2 - Determine the screw length using the length gauge. Then, insert a Ø2.4 mm non-anodized locking screw using the screwdriver.

Optional

If required, a screw can be inserted into the window’s locking hole.

* CAUTION
The use of the threaded guide gauge is compulsory in the window’s locking hole.

The window’s locking hole is compatible with the monoaxial technique only. The use of the threaded guide gauge is compulsory.

FINAL RESULT

Proceed with the monoaxial technique (or polyaxial technique if need be) for the remaining locking holes.
Surgical techniques

Size 3

Example: surgical technique with a standard plate size 3
(Same technique for narrow plates size 3).

Page 1/2

1. Determine the plate size thanks to the templates, then choose the suitable kit. Afterwards, stabilize the fracture, then position the plate.

2. Clip the handle for guide gauge on the Ø1.8 mm threaded guide gauge and perform the drilling using the assembly in the oblong hole.
 - **Option 1** - Determine the screw length using the drill bit and guide gauge.
 - **Option 2** - Determine the screw length using the length gauge.

3. Insert the Ø2.4 mm pink cortical screw into the oblong hole to temporarily fix the plate.
 - **N.B.** In the case of poor bone quality, a Ø2.4 mm locking screw (SDT2.4Lxx) can be inserted to increase stability.

4. Insert a Ø1.4 mm pin into the most distal radioulnar hole for pin and check the joint space. Remove the pin and reposition the plate if required.
Surgical techniques

Example: surgical technique with a standard plate size 3
(Same technique for narrow plates size 3).

Step 5

Polyaxial technique
Insert the polyaxial drill guide into the radioulnar hole (1) and drill using the drill bit. Determine the screw length using the length gauge and insert a Ø2.4 mm non-anodized locking screw using the screwdriver. Proceed similarly with the lateral hole positioned near the radial styloid process (2).

Monoaxial technique
Insert the guide gauge into the radioulnar hole (1) and drill using the drill bit. Option 1 - Determine the screw length using the drill bit and guide gauge. Option 2 - Determine the screw length using the length gauge. Then, insert a Ø2.4 mm non anodized locking screw using the screwdriver.

Optional
If required, a screw can be can be inserted into the window’s locking hole.

* CAUTION
The use of the threaded guide gauge is compulsory in the window’s locking hole and the 2 pre-angled monoaxial locking holes targeting the radial styloid process.

FINAL RESULT
Proceed with the monoaxial technique (or polyaxial technique if need be) for the remaining locking holes.
Example: surgical technique with a standard volar rim plate
(Same technique for narrow volar rim plates).

1. Determine the plate size thanks to the templates, then choose the suitable kit. Afterwards, stabilize the fracture, then position the plate.

2. Clip the handle for guide gauge on the Ø1.8 mm threaded guide gauge and perform the drilling using the assembly in the oblong hole.
 Option 1 - Determine the screw length using the drill bit and guide gauge.
 Option 2 - Determine the screw length using the length gauge.

3. Insert the Ø2.4 mm pink cortical screw into the oblong hole to temporarily fix the plate.
 N.B.: In the case of poor bone quality, a Ø2.4 mm locking screw (SDT2.4Lxx) can be inserted to increase stability.

4. Insert a Ø1.4 mm pin into the most distal radioulnar hole for pin and check the joint space. Remove the pin and reposition the plate if required.
Surgical techniques

▶ Volar rim

Example: surgical technique with a standard volar rim plate
(Same technique for narrow volar rim plates).

Page 2/2

Polyaxial technique
Insert the polyaxial drill guide into the radioulnar hole (1) and drill using the drill bit.
Determine the screw length using the length gauge and insert a Ø2.4 mm non-anodized locking screw using the screwdriver.
Proceed similarly with the lateral hole positioned near the radial styloid process (2).

Monoaxial technique
Insert the guide gauge into the radioulnar hole (1) and drill using the drill bit.
Option 1 - Determine the screw length using the drill bit and guide gauge.
Option 2 - Determine the screw length using the length gauge.
Then, insert a Ø2.4 mm non anodized locking screw using the screwdriver.

Optional
If required, a screw can be inserted into the window’s locking hole.

* CAUTION
The use of the threaded guide gauge is compulsory in the window’s locking hole.

The window’s locking hole is compatible with the monoaxial technique only. The use of the threaded guide gauge is compulsory.

FINAL RESULT
Proceed with the monoaxial technique (or polyaxial technique if need be) for the remaining locking holes.
INITIAL R™ XPERT KITS - INSTRUMENTATION CONTENT

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins - Ø1.4 L 120 mm</td>
<td>4</td>
</tr>
<tr>
<td>T8 prehensor screwdriver</td>
<td>1</td>
</tr>
<tr>
<td>Length gauge</td>
<td>1</td>
</tr>
<tr>
<td>Ø1.8 mm quick coupling drill bit - L 125 mm</td>
<td>1</td>
</tr>
<tr>
<td>Handle for guide gauge</td>
<td>1</td>
</tr>
<tr>
<td>Ø1.8 mm threaded guide gauge</td>
<td>1</td>
</tr>
<tr>
<td>Polyaxial drill guide</td>
<td>1</td>
</tr>
</tbody>
</table>

NB: Supplemental screws are available in sterile packaging (cf.: Initial R™ Xpert 2.4 additional implants)

References
Additional implants
Sterile screws packaged in the supplemental sterile screw caddy

Locking Screws - Ø2.4 mm

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRT2.4L10-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 10 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>SRT2.4L12-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 12 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>SRT2.4L14-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 14 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>SRT2.4L16-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 16 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>SRT2.4L18-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 18 mm - STERILE</td>
<td>3</td>
</tr>
<tr>
<td>SRT2.4L20-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 20 mm - STERILE</td>
<td>3</td>
</tr>
<tr>
<td>SRT2.4L22-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 22 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>SRT2.4L24-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 24 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>SRT2.4L26-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 26 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>SRT2.4L28-ST</td>
<td>Locking screw with conical head - Ø2.4 mm - L 28 mm - STERILE</td>
<td>1</td>
</tr>
</tbody>
</table>

*Not anodized

Standard Cortical Screws - Ø2.4 mm

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT2.4L10-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 10 mm - STERILE</td>
<td>1</td>
</tr>
<tr>
<td>CT2.4L12-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 12 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>CT2.4L14-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 14 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>CT2.4L16-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 16 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>CT2.4L18-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 18 mm - STERILE</td>
<td>2</td>
</tr>
<tr>
<td>CT2.4L20-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 20 mm - STERILE</td>
<td>1</td>
</tr>
<tr>
<td>CT2.4L22-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 22 mm - STERILE</td>
<td>1</td>
</tr>
<tr>
<td>CT2.4L24-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 24 mm - STERILE</td>
<td>1</td>
</tr>
<tr>
<td>CT2.4L26-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 26 mm - STERILE</td>
<td>1</td>
</tr>
<tr>
<td>CT2.4L28-ST</td>
<td>Standard cortical screw - Ø2.4 mm - L 28 mm - STERILE</td>
<td>1</td>
</tr>
</tbody>
</table>

Locking Screw Pegs - Ø1.8 mm

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDT1.8L14-ST</td>
<td>Locking Screw peg Ø1.8 mm - L 14 mm - STERILE</td>
<td></td>
</tr>
<tr>
<td>BDT1.8L16-ST</td>
<td>Locking Screw peg Ø1.8 mm - L 16 mm - STERILE</td>
<td></td>
</tr>
<tr>
<td>BDT1.8L18-ST</td>
<td>Locking Screw peg Ø1.8 mm - L 18 mm - STERILE</td>
<td></td>
</tr>
<tr>
<td>BDT1.8L20-ST</td>
<td>Locking Screw peg Ø1.8 mm - L 20 mm - STERILE</td>
<td></td>
</tr>
<tr>
<td>BDT1.8L22-ST</td>
<td>Locking Screw peg Ø1.8 mm - L 22 mm - STERILE</td>
<td></td>
</tr>
<tr>
<td>BDT1.8L24-ST</td>
<td>Locking Screw peg Ø1.8 mm - L 24 mm - STERILE</td>
<td></td>
</tr>
<tr>
<td>BDT1.8L26-ST</td>
<td>Locking Screw peg Ø1.8 mm - L 26 mm - STERILE</td>
<td></td>
</tr>
</tbody>
</table>

*Blue anodized

References

The information presented in this brochure is intended to demonstrate a Newclip Technics product. Always refer to the package insert, product label and/or user instructions before using any Newclip Technics product. Surgeons must always rely on their own clinical judgment when deciding which products and techniques to use with their patients. Products may not be available in all markets. Product availability is subject to the regulatory or medical practices that govern individual markets. Please contact your Newclip Technics representative if you have questions about the availability of Newclip Technics products in your area.
Locking screws - Ø2.4 mm

Standard cortical screws - Ø2.4 mm

Locking screws - Ø2.4 mm

Example of kit content.

Locking screws:
- Ø2.4 mm
- 16 mm
- 14 mm
- 20 mm
- 18 mm
- 16 mm
- 14 mm
- 12 mm
- 22 mm
- 12 mm
- 24 mm
- 20 mm
- 14 mm
- 24 mm
- 16 mm
- 22 mm

Degree of accuracy for devices with a measuring function: ±0.8 mm

Left Radius

Standard - Size 3