Intraoperative Embolic Events During Total Knee Arthroplasty with Use of Pulsatile Saline versus Carbon Dioxide Lavage

INTRODUCTION

Elderly patients are at risk of developing cardiopulmonary and cognitive impairment following major orthopaedic surgery. One of the mechanisms believed to be responsible for such complications after total knee arthroplasty (TKA) is the release of embolic debris that may travel from the surgical site, through the heart and lungs, and into the brain, contributing to lower arterial oxygen tension, oxygen saturation, end-tidal carbon dioxide tension, arterial blood pressure, and heart rate. Removal of fat globules and marrow particulates from bone surfaces prior to pressurization and cementation of prosthetic components has been shown to reduce the number and size of embolic particles. We conducted a prospective, randomized clinical trial to compare the effect of carbon dioxide (CO₂) gas lavage versus saline lavage on the number and size of embolic particles observed during cementsed TKA.

METHODS

This prospective study was approved by the local institutional review board and informed consent was obtained for all enrollees. Twenty patients undergoing elective TKA were randomly assigned to one of two groups. In group A, standard high-pressure pulsatile saline lavage was used to clean the resected bone surfaces. In group B, the femoral canal was cleaned using CO₂ lavage techniques and the resected bone surfaces were cleaned with a manual saline wash followed by CO₂ lavage. All patients received the same TKA implant design. The presence of embolic particles in the heart and brain was intraoperatively monitored using transesophageal echocardiography (TEE) and transcranial Doppler (TCD) techniques, respectively. For each patient, TEE images were analyzed at tourniquet release and during the final range of motion (ROM) assessment prior to wound closure using the following five point cardiac echogenic scoring system: Grade 0: no emboli; Grade I: a few fine emboli; Grade II: a cascade of many fine emboli; Grade III: a cascade of fine emboli mixed with at least one embolus > 1 cm in diameter; and Grade IV: large embolic masses > 3 cm in diameter. The highest grade observed during either tourniquet release or ROM assessment was assigned to each patient. Based on previous studies, patients were categorized as having a Low (Grade 0 or I) or High (Grade II, III, or IV) cardiac embolic load. For analysis of cerebral emboli, the total number of amplitude peaks (i.e., counts) measured using TCD was recorded for each patient. Patients were categorized as having Low (< 5) or High (≥ 5) cerebral counts. TEE data were available for nine patients in group A and eight patients in group B. Comparative TCD data were available for seven patients in group A and six patients in group B. Fischer’s Exact Test was used to check for differences between groups.

RESULTS

For cardiac emboli, nine of nine (100%) patients in group A were in the High category based on their TEE grade, with eight patients being Grade II and one Grade III (Figure 1). In contrast, only five of eight (62.5%) patients in group B were in the High category, leaving three (37.5%) in the Low category (p = 0.08) (Figure 1). All five group B patients in the High category were Grade II (none were Grade III).

For cerebral emboli, no patient in either group had a High cerebral count. Seven of seven patients in Group A were in the Low category (all seven had 0 counts), while six of six patients in Group B were in the Low category (three had 0 counts and three had 1 count). Three patients in group B were excluded from the comparative TCD analysis due to the presence of a patent foramen ovale (PFO). These three patients with a PFO were also in the Low category, having 1, 3, and 4 counts, respectively. No patients in group A had a PFO.

DISCUSSION

This study examines the effect of pulsatile saline versus CO₂ gas lavage on intraoperative embolic events during TKA. Thirty-seven percent of patients in the CO₂ lavage group had a Low cardiac echogenic load compared with 0% of patients in the standard pulsatile saline lavage group. The incidence of cardiac emboli was low compared to previous studies on conventional TKA. The incidence of cerebral emboli was Low for both groups and for patients who had a patent foramen ovale. Previous studies on cerebral emboli in conventional TKA report up to 43, 34, 40, and 100 counts, respectively.

The results of this study suggest that CO₂ gas lavage, as compared to pulsatile saline lavage, reduces the number of intraoperative cardiac emboli during total knee arthroplasty. Additional studies with larger sample sizes are planned.

REFERENCES